59 research outputs found

    Magnetic excitations of spin and orbital moments in cobalt oxide

    Full text link
    Magnetic and phonon excitations in the antiferromagnet CoO with an unquenched orbital angular momentum are studied by neutron scattering. Results of energy scans in several Brillouin zones in the (HHL) plane for energy transfers up to 16 THz are presented. The measurements were performed in the antiferromagnetic ordered state at 6 K (well below TN~290 K) as well as in the paramagnetic state at 450 K. Several magnetic excitation modes are identified from the dependence of their intensity on wavevector and temperature. Within a Hund's rule model the excitations correspond to fluctuations of coupled orbital and spin degrees of freedom whose bandwidth is controlled by interionic superexchange. The different ordering domains give rise to several magnetic peaks at each wavevector transfer.Comment: Accepted for publication in Canadian Journal of Physic

    Orbital and Spin Excitations in Cobalt Oxide

    Full text link
    By means of neutron scattering we have determined new branches of magnetic excitations in orbitally active CoO (TN=290 K) up to 15 THz and for temperatures from 6 K to 450 K. Data were taken in the (111) direction in six single-crystal zones. From the dependence on temperature and Q we have identified several branches of magnetic excitation. We describe a model for the coupled orbital and spin states of Co2+ subject to a crystal field and tetragonal distortion.Comment: To be published in Physica B (Proceedings of SCES07 conference in Houston

    The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?

    Full text link
    We study the phase diagram of the Ising-Kondo lattice with transverse magnetic field as a possible model for the weak-moment heavy-fermion compound URu2Si2, in terms of two low-lying f singlets in which the uranium moment is coupled by on-site exchange to the conduction electron spins. In the mean-field approximation for an extended range of parameters, we show that the conduction electron magnetization responds logarithmically to f-moment formation, that the ordered moment in the antiferromagnetic state is anomalously small, and that the Neel temperature is of the order observed. The model gives a qualitatively correct temperature-dependence, but not magnitude, of the specific heat. The majority of the specific heat jump at the Neel temperature arises from the formation of a spin gap in the conduction electron spectrum. We also discuss the single-impurity version of the model and speculate on ways to increase the specific heat coefficient. In the limits of small bandwidth and of small Ising-Kondo coupling, we find that the model corresponds to anisotropic Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS), Received by Phys. Rev. B 19 April 199

    Temperature dependence of single particle excitations in a S=1 chain: exact diagonalization calculations compared to neutron scattering experiments

    Full text link
    Exact diagonalization calculations of finite antiferromagnetic spin-1 Heisenberg chains at finite temperatures are presented and compared to a recent inelastic neutron scattering experiment for temperatures T up to 7.5 times the intrachain exchange constant J. The calculations show that the excitations at the antiferromagnetic point q=1 and at q=0.5 remain resonant up to at least T=2J, confirming the recent experimental observation of resonant high-temperature domain wall excitations. The predicted first and second moments are in good agreement with experiment, except at temperatures where three-dimensional spin correlations are most important. The ratio of the structure factors at q=1 and at q=0.5 is well predicted for the paramagnetic infinite-temperature limit. For T=2J, however, we found that the experimentally observed intensity is considerably less than predicted. This suggests that domain wall excitations on different chains interact up to temperatures of the order of the spin band width.Comment: 9 pages revtex, submitted to PR

    Evidence for decay of spin waves above the pseudogap of underdoped YBa2Cu3O6.35

    Get PDF
    The magnetic spectrum at high energies in heavily underdoped YBa2Cu3O6.35 (Tc=18 K) has been determined throughout the Brillouin zone. At low energy, the scattering forms a cone of spin excitations emanating from the antiferromagnetic (0.5,0.5) wave vector with an acoustic velocity similar to that of insulating cuprates. At high-energy transfers, below the maximum energy of 270 meV at (0.5,0), we observe zone-boundary dispersion much larger and spectral weight loss more extensive than in insulating antiferromagnets. Moreover, we report phenomena not found in insulators, an overall lowering of the zone-boundary energies and a large damping of ~100 meV of the spin excitations at high energies. The energy above which the damping occurs coincides approximately with the gap determined from transport measurements. We propose that as the energy is raised, the spin excitations encounter an extra channel of decay into particle-hole pairs of a continuum that we associate with the pseudogap

    Finite Size Scaling for Low Energy Excitations in Integer Heisenberg Spin Chains

    Full text link
    In this paper we study the finite size scaling for low energy excitations of S=1S=1 and S=2S=2 Heisenberg chains, using the density matrix renormalization group technique. A crossover from 1/L1/L behavior (with LL as the chain length) for medium chain length to 1/L21/L^2 scaling for long chain length is found for excitations in the continuum band as the length of the open chain increases. Topological spin S=1/2S=1/2 excitations are shown to give rise to the two lowest energy states for both open and periodic S=1S=1 chains. In periodic chains these two excitations are ``confined'' next to each other, while for open chains they are two free edge 1/2 spins. The finite size scaling of the two lowest energy excitations of open S=2S=2 chains is determined by coupling the two free edge S=1S=1 spins. The gap and correlation length for S=2S=2 open Heisenberg chains are shown to be 0.082 (in units of the exchange JJ) and 47, respectively.Comment: 4 pages (two column), PS file, to be appear as a PRB Brief Repor

    Enhancement of Anisotropy due to Fluctuations in Quasi-One-Dimensional Antiferromagnets

    Full text link
    It is shown that the observed anisotropy of magnetization at high magnetic fields in RbMnBr3 , a quasi-one-dimensional antiferromagnet on a distorted stacked triangular lattice, is due to quantum and thermal fluctuations. These fluctuations are taken into account in the framework of linear spin-wave theory in the region of strong magnetic fields. In this region the divergent one-dimensional integrals are cut off by magnetic field and the bare easy-plane anisotropy. Logarithmical dependence on the cutoff leads to the "enhancement" of the anisotropy in magnetization. Comparison between magnetization data and our theory with parameters obtained from neutron scattering experiments has been done.Comment: 15 pages + 5 postscript figures available upon request, RevTex

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm

    Magnetic excitations in coupled Haldane spin chains near the quantum critical point

    Full text link
    Two quasi-1-dimensional S=1 quantum antiferromagnetic materials, PbNi2V2O8 and SrNi2V2O8, are studied by inelastic neutron scattering on powder samples. While magnetic interactions in the two systems are found to be very similar, subtle differences in inter-chain interaction strengths and magnetic anisotropy are detected. The latter are shown to be responsible for qualitatively different ground state properties: magnetic long-range order in SrNi2V2O8 and disordered ``spin liquid'' Haldane-gap state in PbNi2V2O8.Comment: 15 figures, Figs. 5,9, and 10 in color. Some figures in JPEG format. Complete PostScript and PDF available from http://papillon.phy.bnl.gov/publicat.ht
    corecore